Anti-triplet Charmed Baryon Weak Decays with SU(3) Flavor Symmetry

Chia-Wei Liu

National Tsing-Hua University C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D **97**, no. 7, 073006 (2018)

December 31, 2018

Chia-Wei Liu (National Tsing-Hua University Anti-triplet Charmed Baryon Weak Decays wi

December 31, 2018 1 / 20

Motivation

- Unknown baryon wave functions
- Failure of the conventional factorization approach ${\cal B}(\Lambda_c^+ o \Sigma^+ \pi^0)_{EXP} = (1.24 \pm 0.10)\%$
- Measurements with higher precision in Belle and BESSIII

$$\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+}) = (6.23 \pm 0.33)\%$$

• C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017)

- C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Eur. Phys. J. C 78, 593 (2018)
- C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, 073006 (2018)
- C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, arXiv:1810.01079 [hep-ph].

Outline

1 Introduction of SU(3) Flavor Symmetry

2 Anti-triplet Charmed Baryon Weak Decays

3 Numerical Results

$$egin{aligned} |_1
angle &= |u
angle \ , |_2
angle &= |d
angle \ , |_3
angle &= |s
angle \ |^1
angle &= |ar{u}
angle \ , |^2
angle &= |ar{d}
angle \ , |^3
angle &= |ar{s}
angle \end{aligned}$$

$$\pi^{+} = |_{1}^{2} \rangle = \delta_{i2} \delta^{j1} |_{j}^{i} \rangle = (\pi^{+})_{i}^{j} |_{j}^{i} \rangle$$
$$M = (M)_{i}^{j} |_{j}^{i} \rangle$$

$$(M)_{i}^{j} = \left(egin{array}{ccc} rac{1}{\sqrt{2}}(\pi^{0} + c\phi\eta + s\phi\eta') & \pi^{-} & K^{-} \ \pi^{+} & rac{-1}{\sqrt{2}}(\pi^{0} - c\phi\eta - s\phi\eta') & ar{K}^{0} \ K^{+} & K^{0} & -s\phi\eta + c\phi\eta' \end{array}
ight)_{ij},$$

where $(c\phi, s\phi) = (\cos \phi, \sin \phi)$ and $\phi = (39.3 \pm 1.0)^{\circ.1}$

¹T. Feldmann, P. Kroll and B. Stech, Phys. Rev. D **58**, 114006 (1998); Phys. Lett. B **449**, 339 (1999). □ → (♂) (1998) (1999).

Chia-Wei Liu (National Tsing-Hua UniversityAnti-triplet Charmed Baryon Weak Decays wi

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Invariant tensor
$$\epsilon^{ijk}|_{ijk}
angle \qquad \delta^{i}_{j}|^{j}_{i}
angle$$

Antisymmetric tensor gives us singlet

$$\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) ,$$

$$\frac{1}{\sqrt{6}} (|rgb\rangle - |rbg\rangle + |gbr\rangle - |grb\rangle + |brg\rangle - |bgr\rangle)$$

Same thing happens in color states of mesons

$$\frac{1}{\sqrt{3}}\left(|\mathbf{r}\overline{\mathbf{r}}\rangle+|g\overline{g}\rangle+|b\overline{b}\rangle\right)$$

Singly charmed baryons

$$\Lambda_{c}^{+} = |udc\rangle - |duc\rangle = |_{12}\rangle_{B_{c}} - |_{21}\rangle_{B_{c}} = \epsilon^{ijk}\delta_{k3}|_{ij}\rangle_{B_{c}}$$

$$(\mathbf{B}_{c})_{i} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+})_{i}$$

Octet Baryons

$$\mathbf{B} = \mathbf{B}^{ijk} |_{ijk} \rangle = (\mathbf{B}_n)^i_l \epsilon^{ijk} |_{ijk} \rangle$$

$$p = |_{112} \rangle - |_{121} \rangle = (\delta^{i1} \delta^{j1} \delta^{k2} - \delta^{i1} \delta^{j2} \delta^{k1}) |_{ijk} \rangle = (\delta^{i1} \delta_{l3} \epsilon^{ljk}) |_{ijk} \rangle$$

$$(\mathbf{B}_n)_j^i = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}_{ij}$$

э

< A >

Effective Hamiltonian for c transition

$$\mathcal{H}_{eff} = rac{G_F}{\sqrt{2}} \left(c_+ rac{O_+}{O_+} + c_- rac{O_-}{O_-}
ight) \, .$$

$$O_{+} = \frac{1}{2} \sum_{q,q'=d,s} V_{uq} V_{cq'}^{*} \left((\bar{u}q)(\bar{q}'c) + (\bar{q}'q)(\bar{u}c) \right),$$

$$O_{-} = \frac{1}{2} \sum_{q,q'=d,s} V_{uq} V_{cq'}^{*} \left((\bar{u}q)(\bar{q}'c) - (\bar{q}'q)(\bar{u}c) \right),$$

where $(ar{q}q')\equivar{q}^{lpha}\gamma_{\mu}(1-\gamma_5)q_{lpha}.$

3

Effective Hamiltonian for c transition

$$\mathcal{H}_{eff} = \frac{G_F}{2\sqrt{2}} \left(c_- H(6)_{lk} (\epsilon^{ijl}/2) O_{ij}^k + c_+ H(\overline{15})_k^{ij} O_{ij}^k \right)$$
$$O_{ij}^k = (\bar{q}_i q_k)_{V-A} (\bar{q}_j c)_{V-A} \qquad s_c \equiv V_{us}$$

$$\begin{split} H(6)_{ij} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2s_c \\ 0 & -2s_c & 2s_c^2 \end{pmatrix}_{ij}, \\ H(\overline{15})_k^{ij} &= \begin{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}, \begin{pmatrix} 0 & s_c & 1 \\ s_c & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}_{ij}, \begin{pmatrix} 0 & -s_c^2 & -s_c \\ -s_c^2 & 0 & 0 \\ -s_c & 0 & 0 \end{pmatrix}_{ij} \end{pmatrix}_k \end{split}$$

Chia-Wei Liu (National Tsing-Hua UniversityAnti-triplet Charmed Baryon Weak Decays wi

э

Image: A matched black

$$\mathcal{A}(I \to F) = \langle I | \mathcal{H}_{eff} | F \rangle = \frac{G_F}{\sqrt{2}} T(\mathbf{B}_c \to \mathbf{B}_n M)$$
$$= (\mathbf{B}_n)_i^i M_m^k H_p^{no}(\mathbf{B}_c)_q \langle \binom{i}{i}_{\mathbf{B}_n} \binom{m}{k}_M | O_{no}^p | q \rangle_{\mathbf{B}_c}$$

The process $B_c \to B_n M$ with $T^{ij} \equiv (\mathbf{B}_c)_k \epsilon^{ijk}$

$$\begin{split} T(\mathcal{O}_6) &= a_1 H(6)_{ij} T^{ik}(\mathbf{B}_n)_k^l(M)_l^j + a_2 H(6)_{ij} T^{ik}(M)_k^l(\mathbf{B}_n)_l^j \\ &+ a_3 H(6)_{ij} (\mathbf{B}_n)_k^i(M)_l^j T^{kl} + h H(6)_{ij} T^{ik} (\mathbf{B}_n)_k^j(M)_l^l, \\ T(\mathcal{O}_{\overline{15}}) &= a_4 H(\overline{15})_k^{li} (\mathbf{B}_c)_j (M)_l^j (\mathbf{B}_n)_l^k + a_5 (\mathbf{B}_n)_j^j (M)_l^i H(\overline{15})_l^{jk} (\mathbf{B}_c)_k \end{split}$$

+
$$a_6(\mathbf{B}_n)_l^k(M)_j^i H(\overline{15})_i^{jl}(\mathbf{B}_c)_k + a_7(\mathbf{B}_n)_i^l(M)_j^i H(\overline{15})_l^{jk}(\mathbf{B}_c)_k$$

+
$$h'H(\overline{15})_{i}^{jk}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{l}(\mathbf{B}_{c})_{j}$$
,

Example

$$\mathcal{A}(\Lambda_c^+ o \Sigma^+ \pi^0) = \sqrt{2}(a_1 - a_2 - a_3 - rac{a_5 - a_7}{2})$$

Chia-Wei Liu (National Tsing-Hua UniversityAnti-triplet Charmed Baryon Weak Decays wi

$$T(\mathcal{O}_{6}) = a_{1}H(6)_{ij}T^{ik}(\mathbf{B}_{n})_{k}^{l}(M)_{j}^{l} + a_{2}H(6)_{ij}T^{ik}(M)_{k}^{l}(\mathbf{B}_{n})_{l}^{l} + a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{l}T^{kl} + hH(6)_{ij}T^{ik}(\mathbf{B}_{n})_{k}^{j}(M)_{l}^{l}, T(\mathcal{O}_{\overline{15}}) = a_{4}H(\overline{15})_{k}^{ii}(\mathbf{B}_{c})_{j}(M)_{j}^{i}(\mathbf{B}_{n})_{l}^{k} + a_{5}(\mathbf{B}_{n})_{j}^{l}(M)_{i}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k} + a_{6}(\mathbf{B}_{n})_{l}^{k}(M)_{j}^{l}H(\overline{15})_{i}^{jl}(\mathbf{B}_{c})_{k} + a_{7}(\mathbf{B}_{n})_{l}^{l}(M)_{j}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k}$$

+
$$h'H(\overline{15})_i^{jk}(\mathbf{B}_n)_k^i(M)_l^l(\mathbf{B}_c)_j$$

Table: The *T*-amps of the $\mathbf{B}_c \rightarrow \mathbf{B}_n M$ decays.

Ξ,	T-amp	Ξ;+	T-amp	Λ_c^+	T-amp
$\Sigma^+ K^-$	$2(a_2 + \frac{a_1 + a_2}{2})$	$\Sigma^+ K^0$	$-2(a_3 - \frac{a_1 + a_2}{2})$	$\Sigma^0 \pi^+$	$-\sqrt{2}(a_1 - a_2 - a_3 - \frac{a_1 - a_2}{2})$
$\Sigma^0 \bar{K}^0$	$-\sqrt{2}(a_2 + a_3 - \frac{a_3 - a_7}{2})$	$\Xi^{0} \pi^{+}$	$2(a_1 + \frac{a_1 + a_2}{2})$	$\Sigma^+ \pi^0$	$\sqrt{2}(a_1 - a_2 - a_3 - \frac{a_1 - a_1^2}{2})$
$\Xi^0 \pi^0$	$-\sqrt{2}(a_1 - a_3 - \frac{a_1 - a_3}{2})$		-	$\Sigma^+ \eta$	$\sqrt{2}c\phi(-a_1 - a_2 + a_3 - 2h)$
$\Xi^0 \eta$	$\sqrt{2}c\phi(a_1 - a_1 + 2h + \frac{a_1 + a_2 + 2h'}{2})$				$+\frac{a_1+a_2+2b'}{2}$)
	$-2s\phi(a_2 + h + \frac{a_2 + h'}{2})$				$+s\phi(-a_4 + 2h - h')$
=° n'	$\sqrt{2}s\phi(a_1 - a_1 + 2h + \frac{a_1 + a_2 + 2h'}{2})$			$\Sigma^+ \eta'$	$\frac{\sqrt{2a\phi}}{2}(-a_1 - a_2 + a_3 - 2h)$
	$+c\phi(a_1 + b_2 + \frac{b_1 + b'_1}{2})$				$+\frac{a_1+a_2+2b'}{2}$)
$\Xi^- \pi^+$	$2(a_1 + \frac{a_1 + a_2}{2})$			=0.44+	$-c\phi(-a_4 + 2h - h')$
A0 00	$\sqrt{\frac{2}{2}} (a_1^2 + a_2^2 + a_3^2 + $			= R	$-2(a_2 - \frac{a_1 - a_2}{a_2})$
7.6	$-\sqrt{\frac{1}{3}(2a_1 - a_2 - a_3 + \frac{1}{2})}$	$\Sigma^0 \pi^+$	$\sqrt{2}(a_1 - a_2)$	pK-	$-2(a_1 - \frac{a_1 - a_2}{2})$
Σ· π Σ+	$-2(a_2 + \frac{a_1 + a_2}{a_1 + a_2})s_c$	F+ 0	$+\frac{1}{(\pi/2)^2}$ (s _c	$\Lambda^0 \pi^+$	$-\sqrt{\frac{2}{3}}(a_1 + a_2 + a_3)$
50.0	$-2(a_1 + \frac{2}{2}a_1 - a_1 + a_2 - a_1)$	2. 77	$-\sqrt{2(a_1 - a_2)}$ $-\frac{a_1 + a_2 + a_3 - a_3}{2}$		$-\frac{k_1-2k_1+k_2}{2}$)
Z #	$-(a_2 + a_3 - \frac{a_2}{2})a_c$	5 ⁺	$\frac{2}{12} \frac{1}{2} 1$	$\Sigma^+ K^0$	$-2(a_1 - a_3 - \frac{a_1 - a_1}{2})s_c$
2 11	$[-c\phi(a_1 + a_2 + 2n + \frac{1}{2})]$	2 11	$= \frac{a_1 + a_2 + a_3 + a_7 - 2b'}{2b_1 + a_2 + a_3 + a_7 - 2b'}$	$\Sigma^0 K^+$	$-\sqrt{2}(a_1 - a_3 - \frac{a_1 + a_2}{2})s_c$
	$-\sqrt{2s\phi(a_1 - h - \frac{q_1 - h}{2})]s_c}$		$+2c\phi(2c - b - \frac{3c^{-N}}{2})$	$\rho \pi^0$	$-\sqrt{2}(a_2 + a_3 - \frac{a_3 - a_7}{2})s_c$
$\Sigma^{\circ}\eta'$	$[-s\phi(a_1 + a_2 + 2h + \frac{a_1 + a_2 + 2h}{2})]$	$\Sigma^+ n'$	$\frac{1}{1}\sqrt{2}s\phi(a_1 - a_2 - a_3) + 2b$	$p\eta$	$[\sqrt{2}c\phi(a_2 - a_3 + 2h)]$
=- +++	$+\sqrt{2c\phi(a_1 - h - \frac{a_1 + a_2}{2})}s_c$,	$-\frac{a_1+a_1+a_2+a_2-2h'}{2}$		$+\frac{a_1-a_2-a_3}{a_1-a_2}$)
= K	$2(a_1 + \frac{a_1 + a_2}{a_1})s_c$		$-2c\phi(a_1^2 - h - \frac{a_1 - b'}{2}) s_1$		$+2s\phi(-a_1 - h_1)$
pr.	$2(a_2 + \frac{1}{2})s_c$	=° K ⁺	$2(a_1 + a_2 + \frac{a_1 - a_2}{2})s_1$		+/Jac
=" K"	$2(a_1 - a_2 - a_3 + \frac{a_1 - a_2}{2})s_c$	PR°	$2(a_1 - a_2 + \frac{a_1^2 - a_2}{2})s_1$	pŋ	$\left[\sqrt{2s\phi(u_2 - u_3 + 2n)} + \frac{a_1 - a_2 - 2n'}{2n}\right]$
nr.	$-2(a_1 - a_2 - a_3 + \frac{1}{2})s_c$	$\Lambda^0 = \pi^+$	$\sqrt{\frac{1}{2}}(a_1 + a_2 - 2a_1)$		$-2c\psi^2 - a - h$
Λ° π°	$\sqrt{\frac{4}{3}(a_1 + a_2 - 2a_3)}$		V 3(41 + 42 + 43)		$+ \frac{a_{1} + a_{2} + a_{3} + b'}{2}]s_{c}$
	$+\frac{a_1-a_2-a_3}{2})s_c$		P ^a c	$n\pi^+$	$-2(a_2 + a_3 - \frac{a_1 + a_2}{2})s_c$
$\Lambda^0 \eta$	$\left[\frac{\sqrt{2c_0}}{3}(a_1 + a_2 - 2a_3 + 6h\right]$			$\Lambda^0 K^+$	$-\sqrt{\frac{2}{3}}(a_1 - 2a_2 + a_1)$
	$+\frac{3a_1+a_1+a_2+a_3+a_7+6\delta}{2}$)	$\Sigma^0 K^+$	$\sqrt{2}(z_1 - \frac{z_1 - z_1}{z_1 - z_1})s^2$		$-\frac{3a_1-a_1+2a_2+2a_2}{3a_1-a_1+2a_2+2a_2}$)s.
	$-\frac{\sqrt{6}a\phi}{2}(2a_1 + 2a_2 - a_3 + 3h)$	$\Sigma^+ K^0$	$2(a_1 - \frac{a_1 + a_1^2}{2})s^2$		2 /-
	$+\frac{2a_{1}^{2}-a_{2}+2a_{7}+3b'}{2}$]s _c	PT0	$\sqrt{2}(a_2 + \frac{a_1 - a_2}{a_1 - a_2})s^2$		
$\Lambda^0 \eta'$	$\int \frac{\sqrt{3}a_0}{a_1} (a_1 + a_2 - 2a_3 + 6h)$	pŋ	$\sqrt{2}c\phi(-a_{2}^{2}+2h)$	pK ⁰	$2(a_1 - \frac{x_1 + x_2}{2})s_c^2$
	$+\frac{3a_1+a_1+a_2+a_3+a_7+6b'}{2}$		$+\frac{a_1+a_7+2b'}{2}$)	nK ⁺	$-2(a_3 + \frac{a_3 + a_5}{2})s_c^2$
	$+\frac{\sqrt{6}c\phi}{2}(2a_1 + 2a_2 - a_1 + 3b_1)$		$+2s\phi(a_1 - a_3 + h)$		
	$+\frac{2a_{1}^{2}-a_{2}+2a_{2}+3b'}{2a_{1}-a_{2}+2a_{2}+3b'}$)[s.		$-\frac{s_{c}-2h+h}{2}$]s _c		
ρπ-	$-2(a_1 + \frac{a_1 + a_2}{2})s^2$	$p\eta'$	$[\sqrt{2s\phi}(-a_2 + 2h)]$		
$\Sigma^- K^+$	$-2(a_1 + \frac{a_1^2 a_2}{2})s^2$		+		
$\Sigma^0 K^0$	$\sqrt{2}(a_1 + \frac{a_1^2 - a_1}{2})s^2$		$= 2c\phi(a_1 - a_3 + n)$ $= a_1 - 2h + h'_1$)]s		
nn°	$\sqrt{2}(a_2 - \frac{a_1^2 - a_2}{2})s_1^2$	οπ ⁺	$2(a_1 = \frac{2}{a_1 + a_2})s^2$		
nŋ	$\left[-\sqrt{2}c\phi(a_{2}-2h+\frac{a_{2}-a_{2}-2h'}{2})\right]$	A ⁰ K ⁺	$\sqrt{\frac{2}{6}}(2 - 22 - 22)$	1	
· ·	$+2s\phi(a_1 - a_1 + b + \frac{a_1 + b^2}{2})ls^2$	1 A A .	$V_{1}(a_1 - a_2 - 2a_3)$ $a_1+a_1-2a_2 + 2a_3$	1	
nn'	$\left[-\sqrt{2}s\phi(a_{1}-2h+\frac{a_{1}-2a_{2}-2h}{a_{1}-a_{2}-2h})\right]$		- <u></u> ps_c	1	
,	$-2c\phi(a_1 - a_2 + b_1 + \frac{a_1 + b_1}{2})]s^2$			1	
10 10	$\sqrt{\frac{2}{2}} \left(\frac{1}{2} \right)^{-1} $			1	
A.K.	$-\sqrt{\frac{1}{3}}(a_1 - 2a_2 - 2a_3 + \frac{1}{2})s_c$				

Chia-Wei Liu (National Tsing-Hua UniversityAnti-triplet Charmed Baryon Weak Decays wi

3

< ∃⇒

We omit O_+ for two reasons

- $\frac{c_+}{c_-} \approx 0.4$
- Baryon pole: $\langle {f B}_i | {\it O}_+ | {f B}_p
 angle = 0$
 - H. Y. Cheng, X. W. Kang and F. Xu,

"Singly Cabibbo-suppressed hadronic decays of Λ_c^+ ,"

Phys. Rev. D 97, no. 7, 074028 (2018)

Figure: Baryon pole

Numerical Results

Fitting Results

 $\begin{array}{l} (a_1, a_2, a_3, h) = (0.244 \pm 0.006, 0.115 \pm 0.014, 0.088 \pm 0.019, 0.105 \pm 0.073) \, \text{GeV}^3 \, , \\ (\delta_{a_1}, \delta_{a_2}, \delta_{a_3}, \delta_h) = (0, 78.1 \pm 7.1, 35.1 \pm 8.7, 10.2 \pm 29.6)^\circ \, , \\ \chi^2/d.o.f = 5.32/3 = 1.77 \, . \end{array}$

Table: The data of the $\mathbf{B}_c \rightarrow \mathbf{B}_n M$ decays.

Branching ratios	Data	Branching ratios	Data
$10^2 {\cal B}(\Lambda_c^+ o p ar{K}^0)$	3.16 ± 0.16	$10^2 \mathcal{B}(\Lambda_c^+ o \Sigma^+ \eta)$	0.70 ± 0.23
$10^2 {\cal B}(\Lambda_c^+ o \Lambda \pi^+)$	1.30 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ ightarrow \Lambda K^+)$	6.1 ± 1.2
$10^2 {\cal B}(\Lambda_c^+ o \Sigma^+ \pi^0)$	1.24 ± 0.10	$10^4 {\cal B}(\Lambda_c^+ o \Sigma^0 K^+)$	5.2 ± 0.8
$10^2 {\cal B}(\Lambda_c^+ o \Sigma^0 \pi^+)$	1.29 ± 0.07	$10^4 {\cal B}(\Lambda_c^+ o p\eta)$	12.4 ± 3.0
$10^2 \mathcal{B}(\Lambda_c^+ o \Xi^0 K^+)$	0.50 ± 0.12	$\mathcal{R} = \frac{\mathcal{B}(\Xi_c^0 \to \Lambda \bar{K}^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	0.420 ± 0.056

Numerical Results

Fitting Results

 $\begin{array}{l} (a_1, a_2, a_3, h) = (0.244 \pm 0.006, 0.115 \pm 0.014, 0.088 \pm 0.019, 0.105 \pm 0.073) \, {\rm GeV}^3 \, , \\ (\delta_{a_1}, \delta_{a_2}, \delta_{a_3}, \delta_h) = (0, 78.1 \pm 7.1, 35.1 \pm 8.7, 10.2 \pm 29.6)^\circ \, , \\ \chi^2/d.o.f = 5.32/3 = 1.77 \, . \end{array}$

Comparing with the experiment announcement in 2018 November

Decay branching ratio	${\cal B}_{th}$	\mathcal{B}_{ex}
${\cal B}(\Xi_c^0 o \Xi^- \pi^+)$	$(1.57 \pm 0.07)\%$	$(1.80 \pm 0.52)\%$ ²
${\cal B}(\Lambda_c^+ o \Sigma^+ \eta')$	$(1.0^{+1.8}_{-0.8})\%$	$(1.34 \pm 0.57)\%^3$

Chia-Wei Liu (National Tsing-Hua UniversityAnti-triplet Charmed Baryon Weak Decays wi

 $^{^{2}}$ arXiv:1811.09738 [hep-ex]. "First measurements of absolute branching fractions of Ξ_{c}^{0} at Belle,"

 $^{^{3}\}text{arXiv:1811.08028 [hep-ex]. "Evidence for the decays of } \Lambda_{c}^{+} \rightarrow \Sigma^{+}\eta \text{ and } \Sigma^{+}\eta', "\square \succ \langle \square \succ \langle \square \Rightarrow \langle \square \Rightarrow \rangle \in \mathbb{R} \rightarrow \mathbb{R}$

Numerical Results

				-	
Ξ°	our results	Ξ_c^+	our results	Λ_c^+	our results
$10^3 \mathcal{B}_{\Sigma^+K^-}$	3.5 ± 0.9	$10^3 \mathcal{B}_{\Sigma^+ \overline{K}^0}$	8.0 ± 3.9	$10^{3} B_{\Sigma^{0} \pi^{+}}$	$(1.3 \pm 0.2)^{\dagger}$
$10^3 \mathcal{B}_{\Sigma^0 \overline{K}^0}$	4.7 ± 1.2	$10^{3} B_{\Xi^{0} \pi^{+}}$	8.1 ± 4.0	$10^{3}B_{\Sigma^{+}\pi^{0}}$	$(1.3 \pm 0.2)^{\intercal}$
$10^{3} B_{\Xi^{0} \pi^{0}}$	4.3 ± 0.9			$10^2 B_{\Sigma^+ \eta}$	$(0.7^{+0.4}_{-0.3})^{\dagger}$
$10^{3} B_{\Xi^{0} n}$	$1.7^{+1.0}_{-1.7}$			$10^2 B_{\Sigma^+ n'}$	1.0+1.6
$10^{3} B_{=0 n'}$	8.6+11.0			$10^2 B_{=0K^+}$	$(0.5 \pm 0.1)^{\dagger}$
$10^{3}B_{=+}$	15.7 ± 0.7			$10^2 B_{a\bar{k}^0}$	$(3.3 \pm 0.2)^{\dagger}$
$10^{3} B_{\Lambda^{0} \bar{K}^{0}}$	8.3 ± 0.9			$10^2 B_{\Lambda^0 \sigma^+}$	$(1.3 \pm 0.2)^{\dagger}$
$10^4 B_{\Sigma^+ \pi^-}$	2.0 ± 0.5	$10^4 B_{\Sigma^0 \pi^+}$	18.5 ± 2.2	$10^4 \mathcal{B}_{\Sigma^+ K^0}$	8.0 ± 1.6
$10^4 B_{\Sigma^- \pi^+}$	9.0 ± 0.4	$10^4 B_{\Sigma^+ \pi^0}$	18.5 ± 2.2	$10^4 \mathcal{B}_{\Sigma^0 K^+}$	$(4.0 \pm 0.8)^{\dagger}$
$10^4 B_{\Sigma^0 \pi^0}$	3.2 ± 0.3	$10^4 B_{\Sigma^+ \eta}$	$28.4^{+8.2}_{-6.9}$	$10^4 B_{\rho \pi^0}$	5.7 ± 1.5
$10^4 \mathcal{B}_{\Sigma^0 \eta}$	3.6 ^{+1.0}	$10^4 \mathcal{B}_{\Sigma^+ n'}$	13.2+24.0	$10^{4} B_{pn}$	$(12.5^{+3.8}_{2.6})^{\dagger}$
$10^4 \mathcal{B}_{\Sigma^0 n'}$	$1.7^{+3.0}_{-1.5}$	$10^4 B_{=0K^+}$	18.0 ± 4.7	$10^4 \mathcal{B}_{nn'}$	$12.2^{+14.3}$
$10^4 B_{=-K^+}$	7.6 ± 0.4	$10^4 B_{-\bar{k}^0}$	20.3 ± 4.2	10 ⁴ B	11.3 ± 2.9
$10^4 B_{=0K^0}$	6.3 ± 1.2	$10^4 B_{\Lambda^0 \pi^+}$	1.6 ± 1.2	$10^4 B_{A^0 K^+}$	$(4.6 \pm 0.9)^{\dagger}$
$10^4 B_{pK^-}$	2.1 ± 0.5		. –	A K	· · _ · ·,
$10^{4} B_{n\bar{K}^{0}}$	7.9 ± 1.4				
$10^4 \mathcal{B}_{\Lambda^0 \pi^0}$	0.2 ± 0.2				
$10^4 \mathcal{B}_{\Lambda^0 \eta}$	$1.6^{+1.2}_{-0.8}$				
$10^4 \mathcal{B}_{\Lambda^0 \eta'}$	$9.4^{+11.6}_{-6.8}$				
$10^{6} B_{\rho \pi^{-}}$	12.1 ± 3.1	$10^5 \mathcal{B}_{\Sigma^0 K^+}$	8.8 ± 0.4	$10^6 \mathcal{B}_{oK^0}$	12.2 ± 6.0
$10^{6} B_{\Sigma^{-}K^{+}}$	44.5 ± 2.1	$10^5 \mathcal{B}_{\Sigma^+ K^0}$	17.6 ± 0.8	10 ⁶ B	12.2 ± 6.0
$10^{6} B_{\Sigma^{0} K^{0}}$	22.3 ± 1.0	$10^{6} B_{\rho \pi^{0}}$	23.8 ± 6.1	, me	
$10^{6} B_{n\pi^{0}}$	6.0 ± 1.5	$10^{5} B_{pn}$	10.5+4.5		
$10^{6} B_{n\eta}$	26.5 ^{+11.4} -10.1	$10^5 B_{m'}$	$12.1^{+16.7}$		
$10^6 B_{nn'}$	30.7 ^{+42.3}	$10^{6} B_{+}$	47.6 + 12.2		
$10^6 \mathcal{B}_{\Lambda^0 K^0}$	14.4 ± 3.7	$10^6 B_{\Lambda^0 K^+}$	56.8 ± 14.5		

Table: The numerical results of the $\mathbf{B}_c \to \mathbf{B}_n M$

- ∢ 🗗 ▶

э

Summary

We find out

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (15.7 \pm 0.7) \times 10^{-3}$$
,

which is consistent with the experiment.

• Through the experimental data, we predict the non-leptonic decays branching ratios.

THANKS FOR YOUR ATTENTION

< 回 > < 回 > < 回 >

- 3

